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Motivic p-adic L-functions
| John Coates

Introduction. The connexions between special values of L-
functions and arithmetic is an ancient and mysterious theme in
number theory, which can be traced through the work of Dirichlet,
Kummer, Minkowski, Siegel, Tamagawa, Weil, Birch and
Swinnerton-Dyer, Iwasawa, ... . Recently, Bloch and Kato [1], using
ideas which rely heavily on the work of Fontaine, have succeeded in
formulating a very general version of the classical Tamagawa number
conjecture for linear algebraic groups for arbitrary motives over the
rational field Q, which seems to contain as special cases all earlier
conjectures about these questions. Needless to say, only a very modest
amount of progress has been made so far towards proving the Bloch-
Kato conjecture for specific motives over Q (essentially, the only cases
where it can be established at present are for the Tate motives, and
certain motives arising from elliptic curves with complex
multiplication). In all the cases where proofs are known, the
conjecture is established for each prime p separately, and the deepest
part of the argument involves ideas from Iwasawa theory. Specifically,
one must use a version for the motive of the so called 'main
conjecture' of Iwasawa theory, which has now been completely
proven for the above motives (apart from the troublesome primes 2
and 3 in the case of elliptic curves with complex multiplication),
thanks to the beautiful work of Mazur, Wiles, Thaine, Kolyvagin and
Rubin (see the article by Rubin in this volume). It does at least make
sense to try to formulate the 'main conjecture' for arbitrary motives
over Q, although one should have no illusions about the difficulty of
‘proving it. The formulation of this 'main conjecture' involves, on the
one hand, p-adic Iwasawa modules which are built out of the
representations of the Galois group of Q given by the p-adic
realisations of the motive (see the article by Greenberg in this volume
for a discussion of the case when p is ordinary), and on the other hand,
p-adic avatars of the complex L-function of the motive, which are built
~ out of the critical special values of the complex L-function. The aim of
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the present article is to give a detailed conjectural description of these
motivic p-adic L-functions, at least for primes p for which the motive
has good ordinary reduction. Nearly everything which is contained in
this paper is already given in the earlier articles by B. Perrin-Riou and
myself ([3], (4], [10]). However, the assertions made about holomorphy
in these earlier papers were too strong, and I have, I hope, corrected
these here, as well as giving somewhat fuller versions of some of the
crucial arguments about modifications of the Euler factors at both
finite and infinite primes.

1. Notation and normalization. Let Q denote the field of
rational numbers and C (resp. R) the field of complex numbers (resp.
real numbers). Throughout, p will signify an arbitrary prime number
(we do not exclude p=2), and we write Zp , Qp , Cp for the ring of p-adic
integers, the field of p-adic numbers, and the completion of an
algebraic closure of the field of p-adic numbers. Let U denote the group
of units of Zp . Let A denote the algebraic closure of Q in C . We fix,
once and for all, an embedding ;

which we will often not make explicit in our formulae. Let Qab be the
maximal abelian extension of Q in A. If K/F is a Galois extension of
fields, we write G(K/F) for the Galois group of K over F. For brevity,
we put

G=G(A/Q) , Gab =G(Qab/Q) .

We use the embedding (1) to identify complex and p-adic characters of
finite order of Gab . For each integer m 2 1, let jim denote the group of
m-th roots of unity in A. Let £ be the group of all p-power roots of
unity, and put

P=Q(E) , H=QE)*, J=GH/Q . (2

(here the + denotes the maximal real subfield). We write

V:GP/Q — U ©)
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for the isomorphism given by the action of this Galois group on W,
i.e. {0 = V(9 for all { in & and o in Q. We also put

X = Homeont (, Cp*) . 4

As far as the sign of the reciprocity law map is concerned, we
must stress that we adopt throughout the geometric convention of [5],
rather than the more classical arithmetic convention. Specifically, this
convention is as follows. For each finite prime q, let Frobq denote the
arithmetic Frobenius, i.e. it operates on the algebraic closure of the
field with q elements by sending x to x4 . Let C denote the idele class
group of Q. Let xq be any idele whose q -th component is a local
parameter at q, and all of whose other components are equal to 1.
Then we choose the sign of the reciprocity map

r: C - Gab (5)

such that r(xq) is an element of Gab which acts on the algebraic closure
of the residue field at q via the inverse of Frobg . Lety:C — C* be a
continuous homomorphism. The complex L-function of y is then
defined, as usual, by the Euler product

L(‘Yf S) = H (1 = T(xq)/qs) -1 I (6)

where the product is taken over all finite primes q which are not
ramified for ¥, and xq is as above. Similarly, if S is any finite set of
primes of Q , we write Ls(y, s) for the function obtained by omitting

from (6)-all Euler factors at primes which lie in S. Now let ¢: Gab - A

be any character of finite order. We define its associated idele class
character

Or: C — A* ?)

via the formula ¢r = ¢ or. Thus, if q is a finite prime which does not
divide the conductor of ¢, we have

9ROg) = §(Frobg-1) . (8)
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This last formula explains our choice of the sign of the reciprocity map
(4), because it shows that the complex L-function (6) attached to ¢r
coincides with the motivic L-function attached to ¢ (see §4).

2. p-adic pseudo-measures. The aim of this section is to give a

slight generalization of the notion of a p-adic pseudo-measure which

is given in [13]. Let O be the ring of integers of some finite extension of
Qp , and let I be any profinite abelian group (in the rest of the paper, we
take I = J). For simplicity, let X also denote the group of continuous
homomorphisms from I to Cp*The O - Iwasawa algebra J of I is
defined to be the projective limit of the group rings O[I/H], where H
runs over the open subgroups of I. It is a compact algebra, which
contains O[I] as a dense sub-algebra. The elements of § are called
integral measures on I (with values in O). This terminology is justified
because, if p is in 3, and f is any continuous function from I to Cp ,we
can define the integral

I{fdj.t

by passage to the limit from the case when f is locally constant. In this
latter case, if H is an open subgroup of I such that f is locally constant
modulo H, and if the image of p in O[I/H] is equal to Zu(s)s, then the
value of the above integral is equal to Zu(s)f(s), where, in both sums, s
runs over I/H. We shall need the following generalization of the
notion of an integral measure on I, in order to take into account
possible poles of our p-adic L-functions. Let Q(3) be the ring of
quotients of 3, i.e. the ring of all quotients a/ , where o. and B belong
to 3 and P is not a divisor of 0. An element pu of Q(S) is said to be a
measure if there exists a non-zero element d of O such that d belongs
to 3. We say that an element p of Q(3) is a pseudo-measure if there
exists a non-zero element d of O, a finite subset S of X, and non-
negative integers n(§) (§ € S), such that, for all choices of elements
o(£) in I for € running over S, we have

dTIge 5) EOE - oENE i)

P T T o ey s T T T T e SN R A
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belongs to the Iwasawa algebra S. It is clear that the pseudo-measures
form a subring of Q(3). Suppose now that j is a pseudo-measure. Let ¢
be any element of X which is distinct from all § in S. For each € in S,
choose (&) in I such that ¢(a(§)) = E(c(E)). We then define the integral
of ¢ against L by the formula

iodn = d1Tg e 5 EoE) - oM @ fipar, (10)

where A denotes the integral measure (9). It is immediately verified
that this definition is independent of all choices. Also, if A given by (9)
is an integral measure, we say that the pseudo-measure y has a pole at
each & in S of order < n(£); the minimal value of n(£) such that the
expression (9) lies in 3 is called the exact order of the pole of u at &,

Finally, there is an important involution on the ring of pseudo-
measures on I, which we denote by i — p#. This involution is given
on O [I] by the O -linear map which sends ¢ to ¢-1 for all ¢ in I, and it
extends by continuity to 3. It plainly extends to Q(I), and preserves the
subring of pseudo-measures.

3. The cyclotomic theory. This section will be devoted to a brief
account of the p-adic analogue of the Riemann zeta function.
Recalling that X is given by (4), we write Xajg for the subgroup of X
consisting of all characters of the form

E=yny (ne 2, (11)

where ¥ is any character of finite order of G(P/Q), and y given by (3) is
the p-adic cyclotomic character. Let 1. denote the element of G given
by complex conjugation. We are assuming that (11) is a character of the
Galois group J, and this is clearly equivalent to the assertion that

X(Tea) = (-1)N . (12)

~ The following is the basic existence theorem for the p-adic
analogue of the Riemann zeta function. Fix an integer m < 0 and a
character ¢ of finite order of G(P/Q), which satisfy
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$(Too ) = (-1, (13)

The reason for this condition will become apparent later (in the
notation and terminology explained later, we want the motive Q(m)
twisted by ¢ to have weight 2 0 and to be critical at s = 0). Let O be the
ring of integers of the field obtained by adjoining the values of ¢ to Qp,
and let 3 be the O - Iwasawa algebra of J. We remark that formula (15)
below shows that, in the following theorem, the right hand side of
(14) belongs to the field A of algebraic numbers, and so can be viewed
as lying in Cp via the embedding (1).

Theorem 1. There exists a unique pseudo-measure p = p(m,$) on the
Galois group J satisfying :- (i). For all ¢ in J, (y1"™¢-1(0) - 6)p. belongs to
the Iwasawa algebra S ; (ii). If § given by (11) is any element of X, g
such that m+n < 0, then i

where T = {p}, and @ = ¢y . Moreover, i has a pole of order 1 at yl-m¢-1,

We sketch what is essentially Iwasawa's proof of the existence of
. Put r=4 or r=p, according as p is even or odd, and put ri = rpk for all
k 2 0. For each p-adic unit u, write [u]x for its class in the group of
relatively prime classes of integers modulo ri . The partial zeta
function

Clu,rg;s)=Zw-s (R(sj>l) ,

where the sum is over all positive integers in [u]i, has an analytic
continuation over the whole complex plane, apart from a simple pole
at s=1. For each non-negative integer t, we have

G(u, nic; -t) = - riet By ((ulk /mid/(t+1) , (15)

where {u)x denotes the uniqué representative in Z of [u]i ,which lies
between 0 and rg ; here Bi,1(x) denotes the (t+1)-th Bernoulli
polynomial, which is defined by the expansion

yeY*X/(eY - 1) = Z(hx0) Bu(x) yh/h!
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In particular, we have
Bix) =x-1/2, Bea(x) = xt+1- (¢+1)/2 xt + ... . (16)

For t fixed, let pe denote the largest power of p occurring in the
denominators of the coefficients of Bt+1 (x)/(t+1). One deduces
immediately from (15) and (16) that, for all integers k 2 0 and all p-adic
units u, we have

S, Tite ; -t) = t ut*1/((t+1)rkse) + ut LU, riee ; 0) mod k. (17
If v is also a p-adic unit, we define

8t (u, v; i) = v L(u, 1y ; -0) - Luv, 1 ; -t).
Then we claim that, for all integers k 2 0, we have

B¢ (u, v; rk) = (uv)t 8o(u, v; rx) mod i . - (18)

Note that (17) immediately implies the weaker version of (18), in
which the first two ry's appearing in (18) are replaced by ry,e . But it is
easy to see that this weaker congruence implies (18), when it is
combined with the additional identity

L8z, th;s) =8y, rx;s) , (19)

where h is any integer 2 k, and z runs over any set of representatives
in U of those classes modulo ry, which map to the class of u modulo
Tk . Note that one obvious consequence of (18) is that Se(u, v; 1) is
integral at p for all t > 0, because this is plainly true for t = 0 from the
explicit- formula (16).

We can now construct the pseudo-measure K. For each u in U,
let o(u) denote the unique element of G(P/Q) such that y(o(u)) =y,
and let 1(u) denote the restriction of o(u) to N. Let Py be the field
obtained by adjoining the group of ry -th roots of unity to Q , and let
N be the maximal real subfield of Pk . We write oy(u) (resp. tx(u)) for
the restriction of o(u) to Pk (resp. to Nk). Write Vk for any set of
representatives in U of the group of relatively prime residue classes
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modulo rx . We assume in what follows that k is so large that the
conductor of p divides rx . For each p-adic unit v, define the following
element of the O - group ring of the Galois group of Ni over Q

Ak(v) = 9(6())1 Z 8.m(u, v; i) () dlow(u))!

where the sum is over all u in Vi . The identity (19) shows that, as k
varies, the Ax(v) define an element A(v) of the Iwasawa algebra 3. Put
f = yl-m ¢-1, By virtue of (13), 8 is a character of the Galois group J. If v
is not of finite order in U, it is easy to see that 8(z(v)) - ©(v) is not a zero
divisor in S. For any such v, we define

K= AWv).(0(t(v)) - «v)) 1.

It is readily verified that p is a pseudo-measure on J, which is
independent of the choice of v of infinite order in U, and which
satisfies assertion (i) of the above theorem. Assume now that k is so
large that ry is also divisible by the conductor of %. To prove (ii), we
note that, by definition, the integral of § = yny-against the measure
AMv) is the p-adic limit as k — <= of the expression

H(o(¥))! Zqu) 8.mly, v; rx) un @(o(u))1.

Applying the congruence (18) for t =-n and t = - n - m, we deduce that
this limit is equal to the limit as k— o= of the expression

$(a(v))1 v Z(y) Sn-mlu, v; 1) @(o(u))! .

But, again using (19), we see that this last quantity has a value
independent of k, which is given by

®(t(v)) - E(t(v)) LT(®R, n+m) .

Assertion (ii) is now plain. We omit the proof of the final statement of
the theorem, which is a well known consequence of the von-Staudt-
Clausen theorem giving the exact power of p occuring in the
denominators of the k-th Bernoulli numbers, where k runs over the
positive even integers which are divisible by p-1.

e T e e e e
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4, Complex L-functions. Motives arise in nature as direct
summands of the cohomology of a given dimension of a smooth
projective algebraic variety defined over Q. However, we shall simply
view motives in the naive sense, as being defined by a collection of
realisations, satisfying certain axioms. Moreover, since we must
consider the twists of our motives by arbitrary characters of finite order
of Gab, it is technically necessary to consider motives over Q, with
coefficients in some finite extension K of Q. A detailed account of such
motives and their realizations is given in §2 of [6], and we only briefly
recall some of the key definitions here. Let Z(K) denote the set of
embeddings of K in the complex field C . We identify the C-algebras
K®C (unless indicated to the contrary, all tensor products will be
understood to be taken over Q) and CXK) via

K®C = CEK) : u®w — (w.o(u))g . (20)
In addition, for each prime number 1, we put
Kj=K®Q =Tl |InKa ,

where A runs over the primes of K dividing 1, and Kj denotes the
completion of K at A. By a homogeneous motive M over Q, with
coefficients in K, of weight w(M) and dimension d(M), we mean a
collection of Betti Hg(M), de Rham Hpgr(M), and l-adic Hj(M) (one for
each prime 1) realisations, which are, respectively, free modules over
K, K, and K] , all of the same rank d(M). Moreover, these realisations
are endowed with the following additional structure :- (i). Hp(M)
admits an involution F. ; (ii). The global Galois group G has a

continuous action on H(M) for each prime 1, and there is an

isomorphism
g1 : HBM)®xK) — Hi(M)

which transforms the involution F.. into the complex conjugation;
(iii). There is a decreasing exhaustive filtration (FkHpr(M) : k € Z} on
the de Rham realisation; (iv). There is a Hodge decomposition into C-
vector spaces
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where i,j run over a finite set of indices satisfying i+j=w(M), and
where F.. maps HUI(M) to Hii(M); (v). There is a Geo = G(C/R) -
isomorphism of C - vector spaces (which also commutes with the
action of K)

g~ HBM)®C — Hpr(M)®C (22)

where complex conjugation acts on the space on the right via its action
on C, and on the space on the left via F on Hp(M) and via its natural
action on C; (vi). Finally, for all k € Z, we have

8o (B(i2k) HII(M)) = FRHpr(M) . (23)

The first basic example of such a motive M is the Tate motive
Q(m), for any m in Z, which is of weight -2m and dimension 1. Let
Vi(y) be the tensor product over Z; with Q) of the projective limit of
the Galois modules pn of In - th roots of unity, and let Vi(u)®m be the
m-th tensor power of Vi(n). Then the realisations of M = Q(m) are

given by
Hp(M) =K , HprM) =K , Hi(M) = V)(ju)®m ®g K .

The involution Fe is (-1)™, and the action of G is the natural one. The
Hodge decomposition is specified by taking H™ ™ = K®C, and the
k-th term in the filtration of the de Rham cohomology is either K or 0,
according as k £ -m or k > -m. The isomorphism (22) is given by
8eo(181) = 1®(2xi)m .

If M is any such motive, we can construct the following motives
from M :- (i). The twists M(n) for any n in Z ; the realisations of M(n)
are the tensor products of the corresponding realisations of M and
Q(n); (ii). The dual motive M” ; the realisations of M” are the dual
vector spaces of the realisations of M.

We briefly recall the standard definitions and conjectures for
the complex L-function attached to such a motive M. Put

Coates: Motivic p-adic L-functions 151

Tr(s) = w8/2I(s/2) , T'c(s) = 2(2x)sI'(s) .

For simplicity, we assume that, when w(M) is even, Fo, acts on Hkk,
where k = w(M)/Z, via a scalar (this will be automaticaliy implied by
our assumption made later that M is critical at s=0). As is explained in
§2 of [6], the fact that Hp(M)®C is a free K®C - module, when with the
identification (20), yields a decomposition

Hp(M)®C = & Hp(o, M), where Hp(0, M) = Hp(M)®(k o)C ;

here o runs over £(K) and the tensor product on the right is taken by
regarding C as a K-algebra via ¢. Each Hp(c, M) admits a Hodge
decomposition

Hp(o, M) = @ Hik(c, M) ,

and we let h(jk) = C -dimension of Hik(c, M). This notation is
justified, since it is shown in [6] that these dimensions are
independent of ¢ € E(K). The Euler factor at e, which is also shown in
[6] to be independent of the choice of @, is then defined by

LeoM, 8) = Loo(0, M, 5) = IT(U) Leo(U, 5) ,

where U runs over the direct summands of Hp(o, M) of either the
form (i) U = Hik(e)®Hk/(o) with j < k, or (i) U = Hkk(g), (where we
have abbreviated Hik(c,M) by Hik(0)) and Le.(U, s) is given explicitly by
= (). In case (i), Leo(U, 8) = [T < g T'c (s-)1K) ; (b). In case (ii) when F..
acts on Hkk(o) via (-1)k , then Loo(U,s) = Fr(s-k)h&K) ; (c). In case (ii)
when Fe, acts on Hkk(q) via (-1)k+1 then Leo(U, s) = [r(s+1-k)htk,k), By
contrast, the Euler factors at finite primes do depend on the choice of ¢
in Z(K). If q is a finite prime, let Iq denote the inertial subgroup in G of
some fixed prime of A lying above q. Then the Euler factor at q is
given by

Lg(o, M, 5) = (6Z)(M, q9),

where

ZqM, X) = det (1 - Frobq™1.X | Ha(M)lq)-1,
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and where A is any prime K not lying above q. We have imposed the
standard hypothesis that Zq(M, X) is a rational function in X , with
coefficients in K , which are independent of the choice of the prime A.
The complex L-function of M is then defined by the Euler product

A(U, M, s) = H LV(O', M, s) ’

where v runs over all primes of Q , including v = <. We also write
L(o,M, s) for this Euler product with the infinite Euler factor omitted.

Note that we have
Ao, M(n), s) = A(o, M, s+n) forallne Z .

We assume that there exists a finite set of primes S = S(M) such that (i)
for each prime A, and each q which is not in S and which does not lie
below A, the inertia group I operates trivially on Ha(M), and (ii) for q
not in 5, the reciprocal complex roots of (GZq Y(M, X)-1 have absolute
value equal to qwM)/2, Under additional hypotheses, one can then
define the conductor of M and the global e-factor e(o, M, s) (see [14]).
Here is the standard conjecture about the analytic continuation and
functional equation of this L-function.

Conjecture A (Complex Version). A(c, M, s) has a meromorphic
continuation over the whole complex plane to a function of order < 1,
and satisfies the functional equation

Ao, M, s) =e(o, M, s)A(c, MA(1),-5) . (24)

It is also conjectured that A(o, M, s) is entire if w(M) is odd, and that
the only possible pole which can occur, if w(M) is even, is at s =
1+w(M)/2 . In this latter case, the order of the pole is conjectured to be
the Kj, - dimension of the subspace of Hy(M(w(M)/2)) which is fixed by
the global Galois group G, for any prime A of K.

As is explained in [5] and [14], the global e-factor £(c, M, s) has a
decomposition into local factors, which we shall see plays an
important role in the non-archimedean theory. Let ® denote the adele
group of Q . Fix, once and for all, the Haar measure dx = [] dxy on 8,
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where dx., is the usual Haar measure on R , and, for each prime q, dxq
is the Haar measure on Qq which gives Zq volume 1. To define the
local e-factors, we must choose a complex character of the adele class
group ®/Q, and there are inescapably two natural choices. For the rest
of this paper, p will denote i or -i, where i has its usual meaning as a
complex number. Let 1, denote the character of ©/Q with components
Tp.=(X) = exp(2mpx), and, for each finite prime 9, Mp,q(*x) = exp(-2rpx),
where we have identified Qq /Zq with the g-primary subgroup of Q/Z .
For each place v of Q, , let ey(0, M, P, s) denote Deligne's local e-factor
for the relative to the various choices just described (we have
suppressed the the fixed measure dxy in the notation, and we simply
write p instead of the additive character Np). Then we have

e(c.r MJ' S) = HV E\F(Gf M! P; S) F (25)

where the product is taken over all primes v of Q, including v=ee ,
Note also that we have the fundamental relation

ev(c’ M’ p [ S) EV(U; MA(] ).f —p ’ '5) = 1 . (26)

It is fundamental for the non-archimedean theory that we also
consider the twists of our motive M by characters of finite order of Gab,
and we now briefly recall the definition of these twists . Let ¢: Gab —
A* be a character of finite order, and assume that the values of ¢ lie in
K. Following [6], §6, we can attach to ¢ a motive [¢] of dimension 1
and weight 0 over Q , with coefficients in K. Let V($) be the vector
space of dimension 1 over K, on which G acts via ¢. We then define
Hp(¢) to be the underlying space of V(¢), with the action of F., given
by ¢(t), where 1., is complex conjugation. The de Rham realisation is
given by HpR(¢) = (V($)®A)G, where the global Galois group G acts
both on V(¢) via ¢, and on A in the natural fashion (we endow the de
Rham realisation with the trivial filtration for which Fk is 0 fork >0,
and the whole space for k < 0). The comparison isomorphism

8¢~ : HB($)®C — Hpr($)®C (27)

is obtained by noting that Hpg(¢) provides a Q - structure for Hp(¢)®A,
and then extending scalars from A to C. For each finite prime A of K,
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we take the A-adic realisation to be Hj(¢) to be a vector space of
dimension 1 over the completion Kj, of K at A, on which G acts via ¢.
For each embedding ¢: K — C, we can apply the above motivic recipe
for attaching a complex L-function L(g, ¢, s) to the motive [¢], and, in
view of (8), we see that L(g, ¢, s) coincides with the L-function L((¢9)g ,
s) defined by (6) - indeed, our sign of the reciprocity map was chosen to
assure this. Now let M be a motive over Q , with coefficients in K, as
above. The twist M(¢) is then defined to be the motive over Q , with
coefficients in K, whose realisations are the tensor products over K of
the realisations of M with the corresponding realisations of [¢)].

5. Critical points and the period conjecture. Our goal in this
section is to give a modified version of Deligne's period conjecture of
[6], which seems essential for problems of p-adic interpolation. We
shall be concerned with the following question. Let M be a fixed
motive over Q , with coefficients in some finite extension K of Q , and
consider twists of M of the form

W = M) , with (t) = (1)1, ‘ (28)

where n ranges over Z , and ¢ over the characters of finite order of Gab
with values in K. How does the Deligne period c*(W) vary with n and
¢7? It turns out that the naive answer to this question is not precise
enough for problems of p-adic interpolation, and our aim will be to
use the properties of the complex L-function to give a finer answer, at
least when both M and W are critical at s = 0.

We begin by briefly explaining the naive answer to the above
question, which does not depend on any assumptions about M or W
being critical at s = 0. In fact, the techniques of [6] reduce this to a
problem of linear algebra (see [6] for the background material, which
we do not repeat in detail here). We suppose always that K contains
the values of ¢. We assume that F.. acts on Hk.k(M) by a scalar. In §2 of
[6], Deligne attaches to W a period c+(W) in (K®C)*, which is well
defined up to multiplication by an element of K*. Let p denote a
choice of either +i or -i in C. Let f(¢) denote the conductor of ¢ , so that
¢ factors through the Galois group, which we denote by A(¢), of the
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field geherated over Q by the group of f(¢)-th roots of unity. Following
§6 of [6], we define the element 3p(9) € (KOO)* by

5p(¢) = E(‘ns Alp)) ¢'1(T)®(exp(~21tp/ f(¢)))“ . (29)

If & = + or -, let Hp(M)® denote the subspace of Hg(M) on which F.. acts
via the sign a, and let d*(M) denote its K- dimension.

Lemma 2. Let W be the motive given by (28). Then, up to
multiplication by an element of K*, c+(W) coincides with

cHM)((2mi)n §p(p))d* (M) , (30)

Proof. Let T = M(n), and put € = ¢(1..). Then (28) implies (see [6], p. 329)
that

c&(T) = (2mi)nd™ M) c+(p) | (31)
Now W = T(¢), and (28) gives immediately
Hp(W)* = Hp(T)t ®k Hp(¢) , Hpr(W)* = HpRr(T)t ®x Hpr(¢) .

By definition, c*(W) is the determinant of the comparison
isomorphism

B8R, : HB(W)* ® C — Hpr(W)* ® C z

computed relative to K-bases of the two sides (which each have
cardinality equal to d*+(M)). Now a K-basis of the left hand side is given
by {0i®1®1}, where {o;) is a K-basis of Hp(T)€ . Similarly, a K-basis of
the right hand side is given by {Bi®g®1), where g is any non-zero

- element of Hpgr(¢) and {B;} is a K-basis of HpRr(T)e. Thus c+*(W)

coincides, up to multiplication by an element of K*, with coincides
with c&(T)g-d*(M) | The assertion of the lemma now follows from (31),
and the fact that, as remarked in §6 of [6], we can take g=0-p(9-1)/£(9),
whence g-1 = §5(¢).

Recall that an integer s = n is said to be critical for M if both the
infinite Euler factors L..(o,M, s) and Le.(c,MA(1), -s) are holomorphic at
s = n. The following lemma (due to Bloch, Deligne, Scholl, ...) gives
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several useful equivalent forms of this definition. As before, we write
h(j,k) = C-dimension of Hi*(g) = Hik(c, M) (see (24) and (25)), where ¢
e Z(K). We recall that both the infinite Euler factors, and these
dimensions, are independent of the choice of . '

Lemma 3. The following three assertions are equivalent for M:- (i). M
is critical at s = 0; (ii). If j < k and h(j k) # 0, then j < 0 and k 2 0, and, in
addition, if h(k,k) = 0, then F,, acts on Hkk(c) by +1 if k < 0 and by -1 if
k 2 0; (iii). The map

he: HBM)* ®@R - (Hpr(M)/FOHpr(M))®R (32)
induced from (22) is an isomorphism.

Proof. The equivalence of (i) and (ii) follows from the explicit
formulae for the infinite Euler factors given above, and we do not give
the details. Assume now that (ii) is valid. It follows that

d*(M) = ZG <o) h(Gk) , dM) =220 h(k) . (33)

It follows from (23) and these formulae that the two sides of (32) have
the same R - dimension, and so it suffices to prove (32) is injective.
Again by (23), h.. will certainly be injective if

(Hp(M)*®C) N (@)®20 HKX0) = 0 . (34)

Let a C - basis of Hi-k(c) be given by {ej(c,j,k) : i = 1,...,h(j,k)). Thena C-
basis of Hg(W)*®C is given by the set

{ei(o,j,k) + Feolei(o,j,k)) : j < 0 sk, i = 1,...,hi(j k), oe Z(K)},

together with the set {ej(o,k k) : i = 1,...,hi(k,k), oe Z(K)} if k = w(W)/2 is
< 0. Hence any non-zero element of Hg(W)*® C will have a non-zero
projection on at least one of the subspaces Hi-k(o) with j < 0. This
proves (34), and so also (iii). Conversely, assume (iii) holds. The
equality of dimensions on the two sides of (32) shows that (33) is then
valid. But, if j < k, then the space Hik @ Hkj contributes h(j,k) to both
d*+(M) and d-(M), and so it follows from (33) that we must have j <0<
k. If Hkk 3 0, we also conclude from (33) that F., acts on Hkk by +1ifk

< 0, and by -1 if k 2 0. This establishes (ii), and completes the proof of ; e

the lemma. g
e o e e S R T R ANl - e e —
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Fix an embedding g in Z(K). If v is any place of Q , we define
RV(UI MI p.- s) = LV(GI Mr 5)/(8\?(0: M.r p.r S)LV(GIMA(I)I - S))- (35)

As is already noted in [6] when v is non-archimedean (see Remark
5.2.1, p. 329), this ratio tends to be better behaved that the individual
factors defining it. We shall exploit this fact in what follows. Clearly,
we have

RV(UJ‘ M, P s) = Rv(c, Mh(l), =P - 3)'1.

It is therefore natural to ask whether one can define canonical new
factors Ey(o, M, p, s) such that

Ry(o, M, p, s) = Ey(g, M, p, s)/E(c, MA(1), - p, - 5) (36)

(of course, this last equation cannot characterize the factors Ey(o, M, p,
5)). In fact this is the case, as we shall subsequently explain, Note one
immediate consequence of such a construction. Let S be any finite set
of primes of Q . Define the modified L-function

A)o, M, p, s) =iy ¢ 5) Ev(o, M, p, s) . I1 Ly(a, M, p, 5),

where the latter product is over primes v not in S. Then we have the
following modified form of the functional equation (24)

Ais)o, M, p, s) = (Tly ¢ 5) ev(o, M, p, 8)) As)(o, MA1), - p, -5). (37)

We now give the definition of the E, - factors when v = oo, For s
in C, put '

p¢ =exp(-pns/2), [c,pls)=psTc(s).

- We also recall that the Euler factor at  is independent of the choice of

the embedding o. Similarly, the € - factor at o is independent of the
choice of o (see, for example, the explicit formulae given on p- 329 of
[6]), so that we may drop the o from our notation in this case. We then
define

Eﬂ(Mf P, s) =11 Eeo(U, P 5): (38)

where U runs over the direct summands of the Hodge decomposition,
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and E.(U, p, s) is given explicitly by :-

(a) If U = Hik(c)®HKi(0) with j<k, then Eu(U, p, 5) = Tc, p(s - PhGX) ;
(b) If U = Hkk(o) with k20, then Eeo(U, p,8) =1;

(o) If U = Hkk(c) with k<0, then E(U, p, s) = R(U, p , s).

From the table of values of the £.(U, p, s) given on p. 329 of [6], we
deduce easily that (36) is valid in case (a), and it is plainly true in cases
(b) and (c).

If u and v are complex numbers, we write u ~ v if there exists y
in Q* such that u = yv. The integer r(M) defined by

r(M) = ZG< gy jh(K)

plays an important role in what follows, thanks to the next crucial
lemma.

Lemma 4. Assume that M is critical at s = 0. Then
Eeo(M, p, 0) ~ (2rp) *M) | (39)

where the rational number implicit in the ~ is independent of the
choice of p.

Corollary. Assume that M is critical at s = 0, and that W given by (28) is
also critical at s = 0. Then '

Ew(W, p, 0) ~ Eeo(M, p, 0)(2rp) -nd*M) (40)

To deduce the corollary, we first note that hpy(jk) = hw(jq-n, k-n), and
that d*+(M) = d*(W), because of our hypothesis that ¢(t.) = (-1)n . As M
is critical at s = 0, Lemma 3 shows that d*(M) is given by (33). On the
other hand, since W is critical at s = 0, (ii) of Lemma 3 shows that j-n <
0 if and only if j < 0. Hence r(W) = r(M) - nd+(M), as required.
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We now turn to the proof of Lemma 4. We prove the lemma by
considering the three cases (a), (b), (c) for U above, and verifying (39)
for each U, where r(U) = jh(j k) in case (a), r(U) = 0 in case (b), and r(U)
= kh(k,k) in case (c). This suffices since clearly r(M) = Z@) r(U). If s is in
Z , we shall make use of the following classical properties of the I'-
function (see [6], p. 330) :-

Ccs) ~ @nr)s (s>0), T'r(s) ~ 2r)1-6/2 (s odd),
Ir(s) ~ (2m)5/2 (s>0 and even).

Suppose we are in case (a). Then
Ew(U, p, 0) = (pi ()UK ~ (2rp)r) ,

as required. In case (b), (39) is plainly valid. Suppose finally that we are
in case (¢) (the one delicate case). Put h =h(k,k). There are two
possibilities, according as k is even or odd. (i). Assume k is even, so
that Fe, acts on U by (-1)¥ . Then ew(U, p, 0) = 1 by the table on p. 329 of
[6], and we have

Leo(U, 0) = TR(K) ~ m)rU)/2, L (UA(1), 0) = TR(k+1)h ~ (2m)rU)/2 !

whence (39) holds. (ii). Assume k is odd, so that Fo, acts on U by (-1)k+1,
Then (U, p, 0) = pkh by the table on p. 329 of [6], and we have

Leo(U,0) = TR(1-k)N ~ (2m)(k-Dh/2, 1 (UA(1),0) = TR(j+2)h ~ (27)-(k+1Dh/2,

whence (39) is again plain. The reader should also note that the
unknown non-zero rational number implicit in (39) is independent of
the choice of p.This completes the proof of Lemma 4.

We can now give the modified form of the period conjecture.
Recall that we identify K®C with CEK) yia the isomorphism (20). Let
ct(M) € (K®C)* be the Deligne period of M as defined in §2 of [6], so
that we can view c*(M) under the isomorphism (20) as a vector

ct(M) = (c*(o, M) e xK) (41)

§ 2 R IR =
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whose components are well defined up to multiplication by a system
of numbers o(a) (o e Z(K)), for any « in K*. For each choice of p =i

or -i, we now put
QP(M) = (Qplo, M) = cHM)(2rp)M) (42)

If ¢ is a character of finite order of Gab with values in K, we also recall
that 8p(¢) is given by (29), and its image under the isomorphism (20) is
5p(¢) = (SP(O, ¢)), where

8p(0, §) = Zz e A ($9(1))L(exp(-2np/ (D) . (43)

Lemma 5. Assume that M is critical at s = 0, and that W given by (28) is
also critical at s = 0. Then, for each ¢ € Z(K), the quantity

M), W, p) Qp(a, M)1 8y(c, ¢)-d*M) (44)
does not depend on the choice of p =i or -i.
Proof. It is plain that

3.p(0, §) = $9(t=.) Bp(a, ¢). (45)

The assertion of the lemma now follows from (28), Lemma 4, and the
fact noted earlier that r(W) = r(M) - nd*+(M).

Period Conjecture. Assume that M is critical at s = 0, and that W given
by (28) is also critical at 5 = 0. Then there exists o € K such that the
expression (44) is of the form o(a) for all ¢ € Z(K).

Indeed, by Lemmas 3 and 4, we see that this conjecture is equivalent to
Conjecture 2.8 of [6], applied to the motive W.

6. Modification of the Euler factor at p. We again let M be any
motive over Q with coefficients in K. For this section, we drop the
assumption that M is critical at s = 0, as it will not be needed. Let p be
any prime number - the only restriction placed on p is given by
Hypothesis I(p) below. Our aim in this section is to define a
modification of the Euler factor at p, which is analogous to that already
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given for the Euler factor at e. Throughout, ¢ will denote any element
of Z(K), and p will again denote i or -i.

Let Gp denote the absolute Galois group of Qp , and let Ip, (resp.
Wp) be the subgroup of Gp given by the inertial subgroup (resp. the
Weil group). We fix an element ® of Gp, whose image in Gp/I; is the
geometric Frobenius (i.e. the inverse of Frobp ). For each s € C, let

wg : Wp - C*

be the homomorphism which is trivial on Ip , and which satisfies
0s(P) = ps . We also fix a prime number 1 # p, and a non-zero
homomorphism t;: Ip — Z; . Let A denote a prime of K above 1, and Kj,
the completion at A. Now write Wp' for the Weil - Deligne group of
Qp . Recall that the representations of Wp,' are defined as follows (see
[5], §8). Let V be a finite dimensional vector space over Kj, . Then a
representation of Wp'in V is a pair ® = (y, N), where (i) y: Wp —
GL(V) is a homomorphism, whose kernel contains an open subgroup
of Ip , and (ii) N is a nilpotent endomorphism of V such that

o) N y(0)1 =wi(6) N  forallgin Wp, .

Given such a representation @ , we can define the dual representation
©” = (y», N), where y” is the contragredient representation. Writing I
= Ip for brevity, we define

VN=Ker(N) , Zp(®, X) =det(1-¢(®)X | VN¥D )1,

Let 6: K) — C denote a fixed extension of the embedding ¢ in Z(K).
We then put Lp(c, ©, s) = (GZp)(O, p-s). Write ep(o, Y®wg, p) for
Deligne's e-factor attached to the representation y®ws of Wp on the
complex vector space V®(k,, g)C , and define

ep(0, ©, p , 5) = ep(0, Y®ws , p) det( - @. ps | VID/ VYD ),

By analogy with (35), we can now define Rp(0, ©, p, 5) by simply
replacing M throughout by © in the formula (35). As pointed out in
Remark 5.2.1 of [6], the expression Rp(o, ©, p, s) is particularly well
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behaved. In particular, it does not change if we replace the
representation @ = (y, N) by @' = (y, 0). Finally, we recall (see [5], §8.5)
that, for each representation © = (y, N) of Wp', one can define a new
representation @ = (y88 , N) called the ®-semisimplification of ©,
which has the property that ¥55 is a semisimple representation of the
ordinary Weil group Wp . Again, Rp(o, 8, p, s) does not change if we
replace © by @ss.,

Now let us return to the A-adic representation of Wy, given by
its natural action on H)(M). By Grothendieck's theorem, this A-adic
representation gives rise to a unique representation @ = (y, N) of the

Weil - Deligne group Wy' (see [5], §8).

Lemma 6. There exists a representation ®' = (y', N') of the Weil-
Deligne group in Hy (M), which satisfies :- (i). N' = 0; (ii). If we extend
scalars from Kj to C via the embedding o, then y' is a semisimple
complex representation of Wp ; and (iii). We have

Rp(0, M, p, 5) = Rp(0, @, p, 5). i (46)

Proof. By the construction of the representation ® via Grothendieck's
theorem, we have that (46) is valid with © replaced by ©'. On the other
hand, it was remarked above that Rp(o, 8, p, s) does not change if we
replace @ by ©1 = (v, 0), and subseqently @1 by @' = ©155. It is plain that
this choice of @' satisfies the assertions of the lemma.

We can now define the factors Ep(a, M, p, s) satisfying (36). Let
Y :Wp = GL(Y), whereY = Hx(M) ®x;, ) C 47)

be the semisimple complex representation of the Weil group given by
Lemma 6. Let Y = @ U be the decomposition of Y into irreducible
complex representations of Wp . For each such representation U, we
can define the expression Rp(o, U, p, s) by the formula (35) with M
replaced by U, and, in view of (46), we have

Rplo, M, p, 5) = Iy Rp(o, U, p, 5). (48)
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Each U occurring in this decomposition is irreducible, and hence is
known (see [5] , §4.10) to be of the form Eu ® wy(u) , where s(U) is some
complex number, and £y is a complex representation of the Weil
group such that §y(Wp) is a finite group. Consequently, the inverse
roots of the polynomial det (1 - @. X | U) (note that we do not take the
subspace of U fixed by I, but rather the whole of U) are all of the form a
root of unity times one fixed root. Thus, assuming that these inverse
roots are algebraic numbers, and viewing them as lying inside Cp, via
the embedding (1), we can unambiguously define ordp(U) to be ordp(a)
for any inverse root o of this polynomial; here ordp denotes the order
valuation of Cp, , normalized so that ordp(p) = 1. Note also that ordp(U)
is independent of the choice of ®, since the image of I in GL(U) is a
finite group. Clearly, we have ordp(UA(1)) = - ordp(U) - 1, so that it is
natural to impose the following hypothesis :-

Hypothesis I(p). For each U occurring in the above decomposition, we
have ordP(U) #-1/2.

For the rest of the paper, we assume that Hypothesis I(p) is valid for
our motive M. We then define :-

(@). If ordp(U) >-1/2, then Ep(o, U, p,8) =1;
®). If ordp(U) < -1/2, then Ep(o, U, p,s) = Rp(o, U, p, s).

Note that the case (a) holds for U if and only if case (b) holds for UA(1),
because of Hypothesis I(p). Thus, putting

Ep(a, M, p, s) = Tlu) Ep(o, U, p, 5),
it follows from (48) that the equation (36) is valid, as required,

We now explicitly calculate the the Ep - factors in some simple
cases. Let dp(o,M) denote the number of inverse roots o of the
polynomial

(0Zp(M, X))1 = o det (1 - ®. X |Hy(M)T) (49)

which satisfy ordp(e) < 0 (by hypothesis, the coefficients of this
polynomial are algebraic numbers in C, and we view these as lying in
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Cp via the embedding (1)). As usual, we say that M has good reduction
at p if the inertia group I = I acts trivially on Hp(M) for any prime A of
K not dividing p.

Lemma 7. Assume that M has good reduction at p. Let B (resp. «) run

over all inverse roots, counted with multiplicity, of the polynomial
(49) such that ordp(B) > -1/2 (resp. ordp(a) < -1/2). Then

.Ep(cf M! P, 3)/Lp(0'r MI S) = H(BJ (1 - Bp's ). H(a) (1 - a—lps.-l).

Moreover, if ¢ is a non-trivial character of finite order of G(P/Q ), we
have

Ep(0, M(9), p, 8)/Lp(0, M(@), 5) = (Bp(0, 0) c(9)5)" 4#% ™ (T1(q) o)h@,

where 8,(0, ¢) is the Gauss sum given by (43), and c(¢) = ph®) is the
conductor of ¢.

Proof. The first assertion is immediate from the definitions because
ep(o, U, p, s) = 1, since U is an unramified representation of Wp . To
prove the second, we note that our hypotheses that M has good
reduction at p and that p actually divides the conductor of ¢, imply
easily that

Ep(ﬂ, U(@).r P; s)/LP(UJ U(¢)l S)

is equal to 1 or gp(c, U(9), p, 5)-1, according as ordp(U) is > -1/2 or < -
1/2. Let U be such that ordp(U) < -1/2. As U is an unramified
representation of the Weil group, a standard formula (see (3.4.6) on

p-15 of [14]) shows that
ep(o, U(9), p, 5) = ep(a, ¢, p, $)dImU) , (det UNPH@) .

But (det U)(®) = the product of the inverse roots of det (1- ®X |U), and
it is well known and readily verified that

ep(0, 9, p, 8) = 8p(, §). c(¢)5.

The second assertion now follows.
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7. p - adic L-functions. We now take N to be any fixed motive
over Q with coefficients in Q itself. Subsequently, we shall take the
motive M considered in the earlier sections to be the extension of
scalars of N to a variable finite extension K of Q. Our aim is to propose
a definition of the p-adic L-function of N. While it is very probable
that such p-adic analogues exist for all primes p, we can only make
precise conjectures at present when N has good ordinary reduction at
p. The definition of good reduction at p is given at the end of the
previous section. The ordinarity hypothesis is the following condition
on the p-adic realisation V = Hp(N) of N as a representation for the
local Galois group Gp of the algebraic closure of Qp over Qp, There
exists a decreasing filtration FMV of V (with FmV = V (resp. 0) for m
sufficiently small (resp. large)) of Qp -subspaces, which are stable under
the action of Gp , such that, for all m in Z, Gp acts on FmV /Fm+1V vija
y™; here y is the p-adic cyclotomic character (3). We suppose
henceforth that N has good ordinary reduction at p. The same is then
easily seen to be true for the motive NA(1).

We shall require two additional hypotheses, which are known
in many cases, but which we must impose as axioms because of our
naive definition of motives. It is well known (see, for example, [9], §6)
that our hypothesis that V is ordinary at p implies that it is of Hodge-
Tate type. We recall that this means the following. For each n in Z, let
Cp(n) be the 1-dimensional vector space over Cp , on which Gp acts via
the normal action twisted by yn. Then there is an isomorphism of Gp, -
modules

V@ Cp= @(iez) Cp-i)h) |, where h(i) = dim FiV/Fi+ly;  (50)

here the tensor product on the left is over Qp , and where Gp acts on
this tensor product in the natural fashion, i.e. 6(u®v) = o(uW)®a(v) for
all o in Gp . The fist condition we impose is that the integers h(i)
appearing in (50) are related to the complex Hodge numbers by

h(i) = h(i, w(N) - i) for alliin Z , , (51)

where we recall that w(N) is the weight of the motive N. In fact, (51)




166 Coates: Motivic p-adic L-functions

has been proven by Faltings [7] when N is of the form Hk(X)(n), for a
smooth projective variety X over Q . As before, let

Zp(N, X)y1=det (1-®. X | HiN)),

where | is any prime distinct from p. Let d = d(N), and let ay,..., ag be
the inverse roots in Cp of this polynomial, taken with multiplicity.
Our second assumption is that, for each i in Z, the number of these
inverse roots, counted with multiplicity, which satisfy ordp(a) =i is
equal to the complex Hodge number h(i, w(N) - i). Note, in particular,
that this implies that, in the ordinary case, the p-adic order of these
inverse roots is an integer, and so Hypothesis I(p) is automatically
valid. I understand that the second assumption is known to be true, by
the work of Fontaine and Messing (see [8]), when N has good ordinary
reduction and is of the form HK(X)(n), for a smooth projective variety
X over Q. We assume from now on that these additional hypotheses
are valid. This implies their validity for NA(1).

Lemma 8. Assume that N is critical at s = 0. Let & run over the inverse
roots of the polynomial ZP(N, X)-1, The number of these o, counted
with multiplicity, satisfying ordp(a) < 0 is equal to d*(N). In other
words, we have dP(N) = d+(N).

Proof. This is plain from (33) and the second additional assumption
made above,

Recall that X is the group of all continuous homomorphisms
from the Galois group J = G(H/Q) to Cp*. We write Xalg for the
subgroup of X consisting of all § of the form (11). For such a £, we take
K to be the finite extension of Q generated by the values of x, and let
M be the motive over Q, which is given by extending the scalars of N
to K in the obvious fashion. We then define

N(E&) = M(n)(x). (52)

Note that our fixed choice of the embedding (1), together with the fact
that we take A to be the algebraic closure of Q in C, implies that K is
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actually given with a canonical embedding 1: K — C. In the following,
it is convenient and harmless to systematically omit the embedding 1
from the notation, and simply write A(N(E), s) instead of A(1, NI(E), s),
etc.

We next consider a question which is important for the study
the poles of both complex and p-adic L-functions. Let Yp(N) be the
subspace of Hp(N) given by

YP(N) - HP(N)G(A/H) . (53)

Since G(A/H) is a normal subgroup of G, it is plain that Yp(N) is stable
under the action of G, and so provides an abelian p-adic representation
of G.

Lemma 9. Endowing Yp(N) ® Cp with the linear action of G (i.e.
o(u®b) = o(uw)® b for ¢ in G), it breaks up as a direct sum of G-modules

Yp(N) ® Cp = ¢ e BN) @ 54)

where B(N) is some finite subset of Xalg , and the e(§) are integers = 1.
Moreover, each € e B(N) is of the form & = yny, where n = - w(M)/2
and Y is a character of finite order of G(P/Q).

Proof. Since the representation factors through the Galois group J, and
the decomposition group of p in | is equal to J, it suffices to establish
(54) as an isomorphism of Gp - modules. Now, viewed as a Gp -
module, Yp(N) is of Hodge-Tate type, because it is easily seen that a
sub-representation of a Hodge-Tate representation is again Hodge-
Tate. Thus Yp(N) is an abelian p-adic Hodge-Tate representation of Gp.
By a theorem of Tate ([11], §III - 7), this implies that Yp(N) is locally

* algebraic (note that in [11], it is necessary to assume that the restriction

of the representation to the inertia group is semisimple, but it is
pointed out in [12], §2 that this condition is automatically true). Since
p is totally ramified in the fixed field of the kernel of the rep-
resentation on Yp(N), it follows that, as a Gp-module, Yp(N) is a direct
sum of simple locally algebraic abelian representations. Extending
scalars to Cp , we conclude that it is a direct sum of locally algebraic
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characters of Gp, which factor through J. But such characters are
precisely the elements of Xalg , and so (54) follows. The final assertion
is a consequence of the fact that, for any good prime q = p, the
reciprocal complex roots of det(l - Frobq'l.XI'YP(N)) must have
complex absolute value equal to qw(N)/2, because of our hypothesis
that N has weight w(N).

It is conjectured that the integers e(§) occurring in the de-
composition (54) are related to the poles of the complex L-functions by

e(&) = order of pole of L(M(E1), s) ats=1. (55)

Moreover, for & e B(N), the function L(M(§-1), s) should be
holomorphic at all points s # 1, and, for § in Xa1g but not in B(N), this
function should be entire.

Assume from now on that our motive N is critical at s=0. We
then consider variable twists of N of the form N(§), with £ in Xalg ,
which are also critical at s = 0 (infinitely many such § clearly exist,
since we can, in particular, take & to be any character of finite order of
J). Let c+(N) be the Deligne period of N (it is well defined up to
multiplication by a non-zero element of Q). As earlier, let r(N) = Z(j < 0
jh(j,k). We assume the strong form of the Period Conjecture which is
explained in §5. As always, let p denote i or -i.

Conjecture A (p-adic version). Assume that N is critical at s = 0, and let
p be a good ordinary prime for N. For each choice of the Deligne
period c*(N), there exists a unique pseudo-measure p(c*(N)) on J as
follows: for all § in Xajg such that (i) N(£) is also critical at s = 0, and (ii)
E-1 does not belong to B(N) and & does not belong to BIN~(1)), we have

I} & du(cra0) = AN, p, 01/ (c*N)2rp) ) (56)

where S = {es, p}, and A)N(), p, s) is the modified L-function defined
in §5, for the standard embedding1: K — C.

o SR
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Remarks.

1. Using Lemmas 5, 7, and 8, we see easily that the right hand side
of (56) is independent of the choice of p, and hence so is the pseudo-
measure p(cH(N)).

2. Using the Period Conjecture of §5, and taking into account all
the embeddings of K in C , one can show that the pseudo-measure
plct(N)) takes values in Q p-

3. The following conjecture about the possible poles of the pseudo-
measure p(c+(N)) should replace that proposed in our earlier papers
[3], [4]. Our previous conjecture was too strong because it failed to take
into account possible twisting by the characters of finite order of the
Galois group J.

Holomorphy Conjecture (p-adic version). Let B(N) and BIN~(1)) be the
subsets of Xalg occurring in the decomposition (54) for N and NA(1),
respectively. Then there exists a non-zero b in Zp such that

b Il e Ba) G 10E) - 0(€))2®) Il e BvAa) M(o™M)) - oMM p(e+(M))

belongs to the Iwasawa algebra S = Zp|[ ] ]], for all choices of o(£) and
o(m)in].

In parallel with (55), it seems reasonable to conjecture the even
stronger assertion, that p(c*(N)) will have poles of exact order e(t) at
€1 for € in B(N), and of exact order e(n) at each 7 in BIN/A(1)).

4. If N = Q(m), where m is an odd negative integer, then N is
critical at s = 0, and it is easily seen that Theorem 1 (with ¢ = 1) shows
that both Conjecture A and the Holomorphy Conjecture above do
indeed hold for this motive. For further examples, see [4].

The pseudo-measure u(c*t(N)) satisfies a simple p-adic analogue
of the functional equation of the complex L-function. Recall that p —
pu# is the involution of the ring of pseudo-measures on J, which is
induced by sending ¢ in J to o-1. The conductor of N is an integral ideal
of Z , which is prime to p because N has good reduction at p, and we
write o(IN) for its Artin symbol in J.
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Put

¥(N) =
e(N, 0) . (2p)r™) - rNAD) (-1)rNAD) g, (N, p, 0)1.cH(N)/cHINA(1)).

This number does depend on the choice of the periods ¢*(N), and
c*(N/(1)), but the arguments of §5 show that it is independent of the
choice of p. Moreover, the arguments of [6], §5 prove that it lies in Q.

p - adic functional equation. We have
R(cH(N)) = y(N). p(c+INA())* . s(M)#, (57)

where 6(M) denotes the Artin symbol of the conductor of M in the
Galois group J.

Proof. It suffices to show that, for any € in Xalg satisfying the

conditions set out in Conjecture A above, the integrals of & against
both sides of (57) are equal. This follows immediately by combining
(56), the modified functional equation (37), and the well known
formula that, for q # =0, p, we have ’

Eq(N(g)! p! 0) » Eq(N; P: 0) é(FrObq-‘l)a(q) r

where q*@ is the power of q in the conductor of M; this latter formula
is valid because § is unramified at q.

In view of (57), we see that y(N) plays the role of a global p-adic
e-factor. We only make one observation here about its properties.

Lemma 10. Assume that w(N) is odd. Then
Y(N) = e(N, 0). (2r)(1 + wiNI*N) | c+(N) / cHINA(1)). (58)
In particular, if N = N”(1), and if we take c*(N) = c+(N(1)), then

TN) = e(N, 0) . (59)

Proof. We note that (59) follows immediately from (58), since N =
NA(1) implies that w(N) = -1. To prove (58), we observe that, because
w(N) is odd, the only terms in the Hodge - decomposition (21) are the
HUJ(N) with i # j, and hence the explicit formula for the infinite &-
factors, given in [6], §5, shows that
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€ (N, p, 0) = pPM) , where b(N) = Z < o) (W(N) - 2j + Dh(j, wN) - j).
In view of (33), we conclude that

€oa (N, p, 0) = p(1+WINNA*(N)_ (.1)r(N) (60)
On the other hand, because w(N) is odd, it is readily verified that

1(N) - r(NA(1)) = (1+ w(N))d+(N).

Since the right hand side of this last formula is even, (58) now follows
from (60) and the definition of Y(N).

We conclude by remarking that (59) is exactly what would be
predicted by the main conjecture and algebraic arguments involving
Iwasawa modules (see Proposition 1 of Greenberg's article in this
volume).
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The Beilinson conjectures

CHRISTOPHER DENINGER AND ANTHONY J. SCHOLL*

Introduction

The Beilinson conjectures describe the leading coefficients of L-series of
varieties over number fields up to rational factors in terms of generalized reg-
ulators. We begin with a short but almost selfcontained introduction to this
circle of ideas. This is possible by using Bloch’s description of Beilinson’s
motivic cohomology and regulator map in terms of higher Chow groups and
generalized cycle maps. Here we follow [B13] rather closely. We will then
sketch how much of the known evidence in favour of these conjectures — to
the left of the central point — can be obtained in a uniform way. The ba-
sic construction is Beilinson’s Eisenstein symbol which will be explained in
some detail. Finally in an appendix a map is constructed from higher Chow
theory to a suitable Ext-group in the category of mixed motives as defined
by Deligne and Jannsen. This smooths the way towards an interpretation
of Beilinson’s conjectures in terms of a Deligne conjecture for critical mixed
motives [Sc2]. It also explains how work of Harder [Ha2] and Anderson
fits into the picture.

For further preliminary reading on the Beilinson conjectures, one should
consult the Bourbaki seminar of Soulé [So1], the survey article by Ramakr-
ishnan [Ra2] and the introductory article by Schneider [Sch]. For the full
story see the book [RSS] and of course Beilinson’s original paper [Bel).
Here one will also find the conjectures for the central and near-central points,
which for brevity we have omitted here.
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